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On the structure of the free field equations 
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The Institute of Physics, University of L6di, 90-136 t 6 d i ,  Narutowicza 68, Poland 

Received 31 May 1979, in final. form 23 June 1980 

Abstract. The structure of the PoincarC-covariant equations for free massive fields is 
analysed. It is assumed that the supplementary conditions follow from the field equations. 
By use of the notion of the commutant the general form of such equations is given. The 
necessary and sufficient conditions for their existence are found. 

1. Introduction 

The search for the higher-spin field equations is a long-standing problem in field theory. 
The relativistic theory of the free higher-spin fields first proposed by Fierz (1939) and 
Fierz and Pauli (1939) has been developed by Rarita and Schwinger (1941), Bargman 
and Wigner (1946), Gel’fand and Yaglom (1948), Gel’fand et a1 (1963), Gupta (1954), 
Moldauer and Case (1956), Fronsdal (1958), Umezawa (1952, 1956), Takahashi and 
Umezawa (1953,1964), Aurilia and Umezawa (1967,1969), Weinberg (1969), Hurley 
(1974), Chang (1967), Capri (1969), Shamaly and Capri (1971), Giesen (1975) and 
others. 

The central problem lies in finding the free field equations from which the Klein- 
Gordon equation and the supplementary conditions follow. As is well known, the 
existence of such equations implies that the Lagrangian of the theory exists and an 
algebraically consistent canonical formalism can be constructed. Furthermore, a 
systematic investigation of the interacting systems can be undertaken. This last 
problem is of great importance because of the inconsistency exhibited for the equations 
with external field couplings (Velo and Zwanzinger (1969a, b), for recent literature see 
Cox (1976, 1977), Allock and Hall (1977, 1978)). 

The purpose of this paper is to present the systematic description of the free massive 
field equations under the following conditions: 

(A) the field equations are Poincark covariant; 
(B) the order of the partial differential field equations is equal to one or two (for 

(C) the field equations fulfil the hermiticity condition; 
(D) the Klein-Gordon equation and the supplementary conditions follow from the 

field equations. 
This last requirement denotes that the field belongs to a definite representation (in 
general reducible) of the PoincarC group. Of course, most interesting is the unique spin 
case. 

The search for the free field equations satisfying the above conditions was under- 
taken by a number of authors. Chang (1967), Capri (1969), Shamaly and Capri (1971) 

tensor fields); 
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and Giesen (1979 ,  for example, have already presented methods for finding some sorts 
of field equations. However, these methods can apply only to the restricted class of the 
representations of the Lorentz group. 

Let us summarise the results obtained here. In 0 2 the consequences of the Poincart 
covariance are analysed. It is found that the operator L ( p ) ,  defined by the free field 
equation L ( p ) $ ( p )  = 0, belongs to the commutant X, of the representation of the little 
group R, of the four-momentum p r .  Properties of this commutant are investigated with 
the help of the theorem due to Weyl(1939). The explicit form of the base elements of 
X, for an arbitrary representation of the Lorentz group is given. The question arises 
how to determine the expansion coefficients of the operator L ( p )  with respect to the 
base elements of X, in order to fulfil the conditions B and C. The solution is presented 
in § §  3 and 4. The requirement D is investigated in 0 5 where the necessary and 
sufficient conditions for the existence of the operator L ( p )  are given. Section 6 is 
devoted to giving an example illustrating the introduced formalism. 

Summarising, the problem of construction of the free field equations is reduced to 
finding the nilpotent matrices or matrices for which a power is orthogonal to the 
physical spin space. 

Finally, we remark that many results obtained here have already been found in the 
literature, partially or in a modified form. 

2. Consequences of the relativistic covariance 

Let the field +(x)  transform according to the law 

@ ( x )  = D(R)+[A-'(X - a ) ] .  

The finite-dimensional representation D(A) of the Lorentz group can, in general, be 
reducible. The free field equations have the compact form 

L(-i d,)+(x) = 0 

or in the momentum representation 

U P , ) + ( P )  = 0. (1) 
Here $ ( p )  is the Fourier transform of +(x). The condition of the relativistic covariance 
implies that L ( p )  belongs to the set of the operators X ( p )  defined by 

X ( A p )  = D(A)X(p)D(A- ' ) .  ( 2 )  
Taking A = R ( p )  E R,, where R, is the little group of the four-momentum pr ,  we see 
that 

[ X ( p ) ,  D ( R ( p ) ) l =  0. ( 2 a )  
This last equation denotes that the operators X (  p )  form the commutant (or intertwin- 
ing algebra) X, of the representation D ( R  ( p ) )  = D(A)  J. R,. Because in the p 2  > 0 case 
the little group R, - SO(3) - SU(2) is compact, Weyl's theorem (Weyl 1939, see also 
appendix 1) gives the complete characterisation of the commutant X,. In our case 
Weyl's theorem states that the set X, forms the associative algebra which is the direct 
sum of the mutually orthogonal subalgebras X, according to the decomposition 
D ( R )  = 0, Ns9 ' (R) .  Here s is the spin, 9' denotes the irreducible representation of 
the SU(2) group and N, is the multiplicity of 9' in D. Furthermore, in each subalgebra 
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Xi there exists a basis { X ; j ( p ) }  with the multiplication law 

x : j ( p ) X : l ( p ) =  Sss‘6jkX;,(p) .  ( 3 )  

Here the indices i, k, j ,  1 denote equivalent irreducible representations of the group R, 
with fixed s. The operators x ; k ( p )  intertwine these representations. Note that the 
subalgebras XS, are isomorphic to the algebra of N, x N, matrices and dim XS, = N : .  
The irreducible subspaces of D(R,) can be numbered by the triplet [(A, B ) a ]  where a 
distinguishes the equivalent representations DAB of the Lorentz group (A and B are 
integer or half-integer) contained in D, namely 

xfk ( p )  X[ (AB)a] , [ (A’B‘ )m‘ ]  

This follows from the fact that the representation 9’ occurs in DAB with multiplicity 
one. Finally we note that the base elements x t  ( p )  are homogeneous with respect to p ,  
with homogeneity degree equal to zero, i.e. they are dimensionless. 

Analogously, we can consider the commutant Y of the representation D(A). Weyl’s 
theorem applies to this case because the finite-dimensional representations of the 
Lorentz group are completely reducible. From equation (2) it is obvious that the 
p,-independent associative algebra Y belongs to the commutant X,. In Y we can 
choose the basis { Yb;g,B)} with the multiplication law 

(4) y ( A B )  y ( A ‘ B ’ )  = 8 A A ’  BB’ 4 a‘P s S,,.YbpPJ3’. 

The operators Y bpp“’ intertwine the equivalent irreducible representations of the 
Lorentz group. 

Let us consider the parity-invariant case. The invariance of the field equations 
under the parity transformation T,  

T :  +QO, P) + ,wb(Po,  -PI, 
of the field @ ( p )  implies that we must restrict ourselves to the subalgebra X; of the X, 
defined by 

[x;, T I  = 0.  ( 5 )  
The base elements of the commutant X, transform under the parity transformation as 
follows 

XF(AB)al , [ (A’B’)a’ l  ( p )  + X [ ( B A ) n ] , [ ( B ’ A ’ ) a ’ ]  ( p )  = TXF(AB)al , [ (A’B’)a’ l  (PO, -PIT-* - 
In the algebra X; we can choose the basis defined by the relations 

X / ( A A ) a ] , [ ( A ’ A ‘ ) a ’ ] +  = X f ( A A ) a ] , [ ( A ’ A ’ ) a ’ l ,  ( 6a )  
. 1  

X[(AB)a l , [ (A’B?a’ l*  7 Z[(X[ (AB)a l , [ (A’B’ )a ’ ]  + X[(BA)al , [ (B’A‘)m’I 

* ( X [ ( A B ) a ] , [ ( B ’ A ’ ) a ’ ]  + X / ( B A ) a l , [ ( A ’ B ’ ) a ’ ]  >I i f A # B  andA’#B‘ ,  
( 6 b )  

X f ( A B ) a ] , [ ( A ’ A ‘ ) a ’ ] +  9 (1 /J2)(Xs(AB)a] , [ (A’A’)a‘~ + X f ( B A ) a ] , [ ( A ‘ A ’ ) a ’ ]  if A #  B, ( 6 c )  

Xf(AA)m],[(A’B‘)a’]+ = (1 / ~ ) ( X s ( A A ) a l , [ ( A ’ B ‘ ) m ‘ l  + X f ( A A ) a l , [ ( B ‘ A ’ ) a ’ l  if A’ # B’. 
( 6 4  

From the multiplication rule (3) and the relations (6) we see that the algebra X; is the 
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direct sum of two mutually orthogonal subalgebras X;+ and X;- with the multi- 
plication law 

It is easy to see that this decomposition of X; is realised by the projectors I l , ( p )  = 
;[I* D(L,)77D(Li1)] where L, is the Lorentz boost from k,  = ( m ;  0 ,  0,O) to p,.  Note 
that 

x f ( A B ) a ] , [ ( A ' B ' ) a ' ] *  = x f ( B A ) a ] , [ ( A ' B ' ) a ' ] *  = X s ( A B ) ~ l , [ ( B ' A ' ) a ' l * ,  

The same considerations apply to the subalgebra Y " c X; of the commutant Y, which 
is defined by 

[Y", 771 = 0. 

In Y" we can choose the basis { Y:iAB'} as follows: 

Finally we introduce the Dirac conjugation i=  $+T, DAB(A)  = V - ~ D ~ ~ + ( A ) V  = 
D B A  (A-'), which implies 

x f ( A B ) a l , [ ( A ' B ' ) a ' l  ( p )  = 77-*X;AB)a] , [ (A 'B' )a ' ]  = X f ( B ' A ' ) a ' ] , [ ( B A ) a ]  ( p ) .  (9) 

As is well known, the matrix 77 can be chosen to be Hermitian, i.e. 7' = 7. Consequently 
an operator X (  p )  E X, is Hermitian in the space of states if x = X .  

The question arises how to cons,tfuct explicitly the algebra X, or X,". It is obvious 
that for the representations D = (D5 0)" or (D1 0)" O(D'oODo')  the base elements 
can be constructed from p,, a:, g,,, and (in the spinor case) y,. The parity- 
invariant operators cannot contain ( y5). We choose a set of linearly independent, 
appropriately symmetrised and antisymmetrised covariants constructed from p,, a;, 
g,,, E , , , ~ ~  and y,, which transform as 4 0 $. Then we project these operators on the 
subspaces with fixed s. The projectors can be constructed in standard fashion from the 
relativistic spin operator S2 = - w 2 / p 2  where w, is the Pauli-Lubanski four-vector. 

Now we derive the general formula for the matrix elements of the basis operator 
X[(AB)c , ] , [ (A 'B' )a ' ]  ( p )  in the so called SO(3) basis (spherical basis) of the arbitrary 
representation of the Lorentz group. We denote the base vectors of the representation 
by the kets IABsm), where IA - B1 G s < A  + B, -s G m G s. Firstly we note that 

~ ' ( A ' B ' ~ ' ~ ' ~ X ~ ( A ~ B ~ ) ~ , , , ~ ( A ~ B ~ ) ~ ~ ,  (p)IA"B"s"mf')a,, 

= aa'ai aa"azaA'Ai  aB'Bi8A"A2aBS"Bz 

x a'( A B 's m 'I X F ( A ~ B ' ) ~  'I,[ (A"B ") a"] ( p ) 1 A "B "S " m 

Furthermore, from the form of the Lorentz boost 

D(L,) = e-iq5J3 e - i 4  e-if3K3 eiuJz eiq5J3 

where sin 8 = lpl/dT, cos (T = p3/1pI,  tan 4 = p 2 / p l ,  and from the definition (2) we 
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have 

, . (A’B’s’m’(x;a ,B, ) , ,~ ,~(~ , ,* , , ) , , , ,  ( P ) ~ A ” B ~ ’ S ’ ’ ~ ~ ’ ) ~ , ,  
i+(m”-m’)  , , ( A I B I ~ I ~ Z I I  e-iuJ2 e-iOK3 = e  XS(A’B‘)a‘],[(A”B”srr”] ( k )  
,’OK3 eiuJ21AltBlr s m”),.. 

Inserting between operators the identity I = X IABsm), ,(ABsmI and taking into 
account the fact that the matrix element , , (A ’B’~mlXs (~ ,~ , ) , , ] ,~ (~ , ,~ , , ) , , , l  ( k ) ( A ” B ” ~ r n ) ~ , ,  is 
equal to zero (if subspace (A’B’) or (A”,”) does not contain a subspace with spin s) or 
one because Xs(A’B’),’],[(A”B”),”] ( k )  intertwine irreducible subspaces of the static ( p  = 0 )  
S0(3), we find that the non-zero matrix elements have the form 

, , ( A ’ B ’ S ’ ~ ’ ( X ~ ( A , B , ) ~ , ] , [ ( A , , B , , ) ~ , , ]  ( p)(A”B”S”mf‘),,, 

c d $ , m  ( a ) D p  (0)DE” (- O)d cm,, (-a). 
m 

- - ei4(m”-m’) 

Here dL,,(a) = (sml e-iuJ’lsm’) and D”n”t(0) =(sml e-i0K31s’m). The matrix function 
d“,,(a) can be simply calculated (see for example Werle (1966), equation (12.13)). 
Similarly DE’(0) is given by the Clebsch-Gordan coefficients for SU(2): 

DE‘(0) = c (smlAB~b) (AB~bl  e-iBK31ABa’b’)(ABa’b’~sfm) 
ABaba’b‘ 

3. The degree with respect to pc  of the elements of X,, 

The degree with respect to pI* of the dimensionless operator X (  p )  will be denoted below 
by r ( X ( p ) ) .  For example 

r(yJ = r(y ,y”)  = r ( S : )  = 0, r ( p p / . i i 3  = r(ys + p y / J $ )  = 1, 

It is easy to see that the following rules hold: 

r(XaXb) r(Xa) + r ( x b ) ,  ( l o a )  

r(Xa + Xb) max{r(xa), r(Xb)l, ( lob)  

r ( M X )  = r ( X ) ,  (10c) 

r ( X ( p ’ ) )  = r ( X ( p ) )  ( 1 0 4  

if r ( M )  = 0 and M is invertible, 

where p ’  = ( po ,  R p ) ,  R E SO(3). 
Let us consider a dimensionless operator X ( p )  E X,. It can be expanded in the base 

{X[(AB)a],[(A’B’)cr’] ( p ) )  as follows: 
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where the coefficients @s(AB)a],[(A‘B’)d] are p,-independent. On the other hand we can 
rewrite X ( p )  in the form 

where YLtB) and YLAAB” are the projectors on the representations D tB  and Dt,’”’ 
respectively. 

Now, we demand that 

r ( X ( p ) >  6 1 (12) 

where 12 0 is an integer. Because r( Y )  = 0 then from the equations (loa), (1 l) ,  (1 1 a )  it 
follows that the condition (12) is satisfied if and only if the relations 

hold for all [(AB)a] and [(A’B’)a’]; s varies from max(1A- Bl, lA’-B’l) to 
min(A+B,A’+B’) .  The solution of equation (13) is given by Kulesza and 
Rembielitiski (1980) and has the following form: 

where hj$B)a],[(A’B’)a’] are arbitrary coefficients, 2 max(1A -A’\,  IB - B’I) S 1 S 
2min(A+A’,B+B’) ,  2 n = 0 , 2 , 4 , .  . . ,  [l-2max(lA-A‘l,IB-B’I)] and 
w:AB),(A,B,) min are given by 

if A 3 B , A ‘ > B ’ o r A S B , A ’ S B ’ ,  

if A > B, A’< B‘ or A < B, A’>  B’ and both A + B and A’+ B’ are integer, 

i = O  

M-1 

X n [ ~ ( ~ + l ) - ( ~ o + k ) ( s o + k + l ) ] ~ / ~  (15c) 
k = O  

if A > B, A‘<  B’ or A < B, A‘> B’ and both A + B and A’+ B’ are half odd integer. 
Here N = / (A + B )  - (A’+ B’)l, so = min(lA - BI, IA’- B’l), sm = max(A + B, A’+ B’). 
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Finally, we note that from the above solution it follows that in equation (13) 
(a) the maximal and minimal degrees of 1 are equal respectively to l,,,= 

(b) for fixed (AB) and (A'B'), 1 is only even or only odd; 
(c) X f ( A B ) a ] , [ ( A ' B ' ) a ' ]  does not contain the terms with degree less than lmin (see also 

2 min(A +A' ,  B + B' )  and lmin = 2 max(1A -A'] ,  IB - B'l); 

equation (1 1) in Kulesza and Rembielidski (1980)). 

4. The free field equations 

In this section the results of the preceding two sections are applied to the determination 
of the structure of the free field equations consistently with the conditions A, B and C of 
0 1. According to the condition B, the operator L( p )  defined by the field equation (1) 
has the form 

where r ( L k / ( J 7 ) k ) = k  and q = 1 or 2. Because L k ( p )  is homo eneous of degree k 
in p then Lorentz covariance implies that each L k / ( J p  ) belongs to the 
commutant X,. Moreover, the parity invariance implies that Lk/(Ji;Z)k belongs to 
the subalgebra Xg rather. In particular, the p,-independent operator LO is 
contained in the algebra Y" c Xg. Consequently, the operators L k  take the form 

q k  

A Z B  

The coefficients o ~ [ ( A B ) a ] , [ ( A ' B ' ) a ' ] *  and v(,ApB) will be determined later. NOW we 
concentrate our attention on the hermiticity condition C .  As is mentioned in 0 2 (see 
equation (9) and below), the hermiticity of the operator X in the Hilbert space is 
equivalent to the condition 8 = X. From the equations (6), (8), (9) we have 

- S  
X [ ( A B ) o l , [ ( A ' B ' ) a ' l *  ( p )  = X ! ( A ' B ' ) a ' l , [ ( A B ) a l f  ( p )  

and 

p ; i A B )  = Y ;:AB). 

Therefore from the hermiticity of L, i.e. from the conditions L k  = L k ,  we obtain 

for k # 0 (18a) S *  - 
0 k [ ( A B ) a l , [ ( A ' B ' ) a ' ] *  - 0 Sk[(A'B')a' l , [ (AB)al* 

Note that Lo can be diagonalised by the inner automorphism in the a1 ebra Y W .  By the 
formula ( lOc)  this automorphism does not change the degree of L k / (  . s t k  p ) , and induces 
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only the point transformation of the field $. Thus we can choose Lo in the diagonal form 

A P B  

where the non-zero coefficients? vLAB) are real. 
Let us consider the consequences of the requirement B. For this purpose we denote 

by {AB} the set {(A - B ( ,  (A  - BI + 1, . , . , (A + B ) }  and rewrite equation (17a) in the 
following form 

( x F ( A B ) a ] , [ ( A ’ B ‘ ) . r ’ ]  + X [ ( B A ) a l , [ ( B ‘ A ’ ) a ’ l  ) 

+ (WSk[(AB)a] , [ (A‘B’)a’ ]+  - oSk[(AB)a] , [ (A’B’)cI’]-)  

( x f ( A B ) a ] , [ ( B ’ A ’ ) . r ’ l  + X f ( B A ) a l , [ ( A ’ B ’ ) a ’ l  )I* (20) 
Here the definitions ( 6 a ) - ( 6 d )  are used, t = 1 if A # B and A’ # B’, t = 2 if A = B and 
A’ # B’ or A # B and A’ = B‘, t = 2 if A = B and$ A‘ = B’. Now from equations (14) 
and (15) we determine the coefficients W ~ [ ( A B ) a ] , [ ( ~ ‘ B ’ ) a ’ ] * .  We start from the case k = 1. 
As is mentioned in § 3,  the minimal degree l,,, of the operator 

W ; A B ) a ] , [ ( A ’ B ’ ) a ’ ] X ~ ( A B ) a ] , [ ( A l g ‘ ) a ’ ]  ( p )  
S 

is equal to 2 max(1A -A‘[,  IB -I?‘(). Moreover 1 is only odd or only even. Thus in 
equation (20) the coefficients W s [ ( A B ) o ] , [ ( A ’ B , ) , ’ ] i  and the intertwining operators 
X [ ( A B ) a ] , [ ( A ’ B ‘ ) a ’ ]  must fulfil the following conditions: 

2 max(1A -A’[,  ( B  - B’I) = 1 and for A # B, A’ # B’, 
S S 

W l [ ( A B ) a ] , [ ( A ’ B ’ ) a ’ ] +  = o l [ ( A B ) a ] , [ ( A ’ B ’ ) a ’ ] -  

or 
2 max( I A - B ’I, /A’  - B I) =: 1 a n d f o r A # B , A ’ # B ’ ,  

S - 
l [ ( A B ) a l , [ ( A ’ B ’ ) a ’ ] +  - - W s [ ( A B ) o l , [ ( A ’ B ’ ) a ‘ ] -  

(for A = B or A’= B’ we have w ; [ , , , l , [ .  ] -  = 0) where A a B, A’>  B’. Therefore from 
equations (14) and (15) we have§ 

~ ~ [ ( A B ) o l l , [ ( A ’ B ‘ ) . r ’ ] +  = A l [ (AB)a] , [ (A’B‘ )a ‘ ] ( IS (S  + 1) - T ( T  + 1)1)”* ( 2 1 a )  
and for A # B, A’ # B’, 

S 

W l [ ( A B ) a ] , [ ( A ‘ B ’ ) a ‘ ] +  = W s [ ( A B ) a ] . [ ( A ’ B ’ ) a ’ ] -  

if card[({AB} U {A’B’}) - ({AB}n {A’B’})] = 1 and where 
T E[({AB}u{A’B’})-({AB}~ {A’B’})], 

Ws[(A,A-f).rl,[(A.A-l)a’l+ = -o;[(A,A-f)al,[(A,A-l)u’]- = l [ ( A , A - i ) a ] , [ ( a , A - f ) a ’ ]  ( 2 s  + 1). (21b)  

The other coefficients W s [ ( A B ) a ] , [ ( A ’ B ’ ) a ‘ ] i  vanish. 

t The invertibility of the matrix Lo guarantees that the massless modes are absent. 
1: Note that in the last three cases (for A = B or A’= B’) the coefficients w;[(A~)~,,[(~,~,).,,- do not appear in 
equation (20) (see equations ( 6 a ) - ( 6 d ) ) .  
8 We use standard set-theoretical notation: u-sum, n-product, card-cardinal number. 
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In similar fashion we obtain for the case k = 2 the following formulae 

&[ (AA)a ] , [ (AA)a ’ ]+  = AO[(AA)a ] , [ (AA)a ’ ]  + s(s + l ) A 2 [ ( A A ) a ] , [ ( A A ) a ’ ] ,  

WS[ (AA)a ] , [ (AA)a ’ ] -  = 0 ,  ( 2 2 a )  
- 

WS[(A,A- l )a] , [ (A,A- l )a ’ ]*  - AO[(A,A-l)a],[(A,A-l)a’]* + s(s + l )A2[ (A,A- I )a ] , [ (A,A- l )a ’ ] ,  

Wi[ (A,A- j )a] , [ (A,A- j )a ‘ l+  - W2[(A,A- j )a] , [ (A,A- j )a ’ ] -  

(22b)  
S - 

= hO[(A,A-j)a],[(A,A-j)a’] + s(s + l )h2[(A,A-j)al , [ (A,A-j)a’ l ,  (22c)  
for j = 2 , 3 ,  . . . , A; if card[({AB} u {A’B’}) - ({AB} n {A‘B’})] = 2 then 

W i [ ( A B ) a ] , [ ( A ’ B ’ ) a ’ ] *  = A2[ (AB)a ] , [ (A tB ‘ )a ’ ] *  (I[s(s -k 1 ) -  T l ( T 1  + I ) ]  . [s(s + 1)-  Tz(T2-k 1)]1)”2 
( 2 2 4  

where~~,r~~[({AB}u{A’B’})-({AB}n{A’B’{)]andforB=A-i,i=3,4,. . . , A w e  

constants A 2[(AB)a] , [ (A’B’)a’ ]+ and A 2[(AB)a] , [ (A‘B’)a’ ] -  can differ in general. The other 
coefficients w i [ . . . ] , [  ...I* vanish. Note that the hermiticity condition (18a) becomes 

have h 2 [ ( A B ) a ] , [ ( ~ ’ B ’ ) a ‘ ] +  = ~ ~ [ ( A B ) ~ I , [ ( A ’ B ’ ) ~ ’ I -  while for B = A, B = A - 1 Or B = A - 2 the 

5. Existence conditions for the free field equations 

In this section we will analyse the necessary and sufficient conditions for existence of the 
operator L ( p )  satisfying the requirement D in Q 1. These conditions determine the 
coefficients wSk[(AB)a],[(A’B’)a,]* and uLAB) definitively. 

Let us formulate the problem. We demand that the supplementary conditions 

(1 - W ) ) $ ( P )  = 0 (24)  

and the Klein-Gordon equation 

( p 2 -  m 2 ) $ ( p )  = 0 

follow from the field equation (1) .  Here the operator l l ( p ) ~ X ,  projects on the (in 
general reducible) sub-representation space of the representation of the PoincarC 
group. This means that the field $( p )  contains a definite mixture of spins. In particular, 
we can demand the uniqueness of the spin of the field. 

If the equations (24)  and (25)  follow from the field equation (l), then the operators 
M ( p )  and D ( p )  defined by the relations 

M ( p ) L ( p )  = I - m p )  (26)  

shouldexist. Writing M ( p )  and D ( p )  in the form M ( p )  =E, ( q ) W r ( p )  and D ( p )  = 
(Jp2)’Dj(p) ,  where M , ( p )  and D j ( p )  are dimensionless with respect to pcL, and using 

equations (16) ,  (26)  and (27) ,  we obtain the following necessary and sufficient condi- 
tions (for details see appendix 2).  M ( p )  exists iff for a natural number n the following 
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equations hold 

permutations 

( I  - n)(r '  r = O  all symmetrised ( - L ~ ~ L , ) ' ( - L ~ ' L , ) " - ~ ~ ) ( ~ . ~ ' L ~ )  = 0. (28b)  
permutations 

D ( p )  exists iff for a natural number m the following equations hold 
[ ( m -  11/21 

P 2  c c (-Lo'L2)r(-Lg1Ll)m-1-2r 
r = O  all symmetrised 

permutations 

[(m-+1)/21 
- m  c (- LO L2) (-LO I, 1) + - - 0, 

1=0 all svmmetrised 
permutations 

r = O  all symmetrised 
permutations 

permutations 

Here the symbol [ f ]  denotes the Ent function, while the symmetrised sum 
Z,II symm. permut. XfX is defined as the sum of all different permutations of the product 

x2 . . , x2 x 1 . . . XI 
a b 

with the coefficients equal to one. For example, 

x;x: = x2x; + XlX2Xlf x:x2. 
all symm. permut. 

If the equations (28) and (29) are satisfied then the operators M ( p )  and D ( p )  have the 
form 

permutations 

m--2 [ k / 2 ]  

k-O r = O  all svmmetrised 
permu tations 

permutations 

Note that for L 2 ( p )  = 0 the equations (28)-(31) simplify considerably, and instead of 
the above relations we have 
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M ( p )  = (I-II)( k - 0  (-Li'Ll)k)Li', 

Similarly for L1 = 0 the equations (28)-(31) have the forni 

( I  - n)(L,1L,)n/2+1 = 0, 

[ p 2  + m2(L;1L2)](L;1L2)m/2 = 0, 

Here n and m are even. We note that from the orthogonality of the subalgebras X;: it 
follows that the conditions (28)-(29) (or the simplified versions (32)-(33) and (36)-(37)) 
are satisfied in each subalgebra X,"s separately. Furthermore these relations are in fact 
the matrix equations. This follows from the isomorphism mentioned in 0 2 between the 
subalgebras X;: and the algebras of N,, X N,, matrices, where N,, = (dim X;Z)1'2. 
The matrix elements of Lk are given by equations (17), (19) and (21)-(23). Note that 
the matrices representing? Lk, M and D are Hermitian. It is-remarkable that the 
equations ( 3 2 )  and (36) define the singular matrices (Li'L1/Jp2)Z and (LG1L2/p2)Z 
whose ( n + 1 )  and ( n / 2 + 1 )  powers respectively are orthogonal to the projector 
( I  - II);. The solution of this problem is known at least in the Jordan basis (see for 
example Gantmacher (1959)). 

Now let us consider the special case when $ ( p )  has the unique spin (T. This means 
that for the tensor representations the projector II( p )  projects on the irreducible 
subspace with spin (T, while for the spinor ones it projects on the direct sum of the 
particle and antiparticle subspaces with spin U, i.e. XI = II;+ + IIy-. It is not difficult to 
prove that in the unique spin case the existence of M ( p )  implies the existence of D ( p ) .  
For example, in the fermion case the relation (32) implies equation (33) for m > n + 1. 
In the following we restrict ourselves for simplicity to the case L2 = 0. Thus we can 
investigate the equation (32) only. We will denote by II:(p) the projectors on whole 
parity-invariant subspaces with spin s, namely I E (  p )  = X:(AB)a] , [ (AB)a]*  ( p ) .  
The projector n(p) = II;+ +Il;-, where II,",(p) project on the j th irreducible subspace 
(*).with spin U. Then equation (32) becomes 

t In the basis {Xt(ABja],[iA'B'jo']t} the coefficients w;[(AB)n],[(A'B')a']t and ,LAB) are the matrix elements of 
L k / ( J T ) k .  In the following the term 'matrix L r / ( J 2 ) k '  denotes the matrix build from w;~...],[...li or oiAB'. 
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for every s f (T and 

in:-n;*)(L;* - 1  J T j )  L?* n + l  = o  
P 

for s = U. Here Lski = 13Zk = L k I I ; .  Thus equations (40b) are satisfied by the matrices 
whose ( n  + 1)th power is orthogonal to the projectors II," - IIT+. The matrix elements 

1 
7 Ls[(AB)al,[(A'B')a'l* = Ws[(AB)al,[(A'B')a'l* JP 

and 
( A B )  

L&(AB)m],[(A'B')a']* = a (AB) , (A 'B ' ) aaa 'o  a 

given by equations (19), (21) and (23) are determined definitely by the equations 
(40a, b) .  Note that the matrices corresponding to the different values of s are 
interdependent in view of equations (19)-(23). 

6. The example 

Now we give the standard example illustrating the introduced formalism. Let us 
consider the Rarita-Schwinger theory for the spin-; field. The representation D is 
c h p s e n p  D f i  O ( D ' O @ D o t )  = ( D t o @ D o f ) @ ( D 1 ; @ D f l ) .  Because (Dli@Di')(R) = 
92@9d"@9i@94 and ( D ; o @ D o i ) ( R ) = 9 t @ 9 4 ,  X , = X ~ @ X ~  where d i m x i  = 4 ,  
dim Xb = 16. From the definition of the parity-invariant subalgebra X," we have 
X; =X$OX$@X$ OX;! where dim Xi2 = 1, dim X$ = 4. Acfording to the 
disCussion in 912, the suba\gebras X$, and X$ have the bases { X f l , ; ~ , [ l , ; ~ * }  and 
{X~I,;I,[I,$I*, Xfl,;l,[i,o]*, Xf;,o],[~,;]*, Xf;,o],[;,o]* } respectively. Similarly, the two- 
dimensional subalgebra , Y" = Yncl*;i @ Y"'f20) is spanned by Yn"2i) = 

X ~ ; , o ~ , [ t , o ~ - .  Because in our case the vector-spinor fiel! 41LA3 p = 0, 1,2,:, A = 1 , 2 , 1 , 2 ,  
describes the spin-? particles, the projector ll = II' = X~l,;l,[l,;l+ + X ~ l , ; ~ , r l , ~ l -  while 
( I  - n) = II'. Consequently equation (40b) is satisfied trivially. From equations 
(19)-(21) and (23) we obtain immediately that the Hermitian matrices representing 
L;J@ and Li, have the form 

X{I,;I [I,;]+ + X?I,$I,[I,~I- + X~I,;I,[I,;I+ + X?I,~] , [ I ,~I-  and Y"(t30) = x: ,O],[t ,o!+ 
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we obtain the operator L in the final form 

c-’L = Vi&Xil,;l,[l,;J+ - x/l,;l,[l,;l- 1 +~(x!l,;l,[l,;l+ - Xtl,;l,Ll,fl- ) 

+ 4~xtl,;l,[f,ol+ + Xfl,;l,[f,ol- 1 + 4*(X~$,ol,[l,fl+ +X!$,o,,[l,;,- 1 
+ 2~~~~(x~; ,ol , [~,ol+ - xf;,ol,[;,ol- )] + m( Y r r ( l , i )  - 41412 Y v ( f , O )  >. 

Using the explicit formulae for the base elements X and Y, given in appendix 3, we 
rewrite the Rarita-Schwinger equation in the standard form 

u[prs; +% + (4 + 4*)/Jj  + 214/2)y,pyy” -1(1 + 2 4 / 6 p , y ”  - 1[1+ (24J*/J3)ly,p”l 

+ ~ [ s : : - Q + I ~ I ~ ) ~ , ~ ” I ~ ~ ~ ( P )  = 0. 
Here g,, = diag(+ - - -), {y,? yy} = 2g,,. From the formulae (34) and (35) we can 
obtain the operators M ( p )  and D ( p ) .  

7. Final remarks 

Let us summarise the results. We have introduced the description of the free field 
equations (satisfying the reasonable conditions A-D of 0 1) using the notion of the 
commutant X,. This description is free from the explicit p , (a , )  dependence and 
convenient for the formulation of algebraic conditions like B, C, D of § 1. The general 
form of the free field equations has been given in this framework (equations (16), (17a), 
(19), (21a, b ) ,  (22a-d), (23)) and the existence conditions formulated (equations 
(28a, b ) ,  (29a, b ) ,  (32), (33), (36), (37)). For unique spin theories these conditions give 
very stringent limitations on the possible form of the free field equations?. In 0 2 the 
explicit form of the base elements of the commutant X, for an arbitrary representation 
of the Lorentz group is given. 

Summarising, the problem of constructing of the free field equations is reduced to 
finding the matrices satisfying the algebraic formulae (28) and (29), or, in the cases 
Lz = 0 or L1 = 0, to finding the nilpotent matrices (see equation (40a)) or matrices with 
a power orthogonal to the physical spin space (see equation (40b)). 
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Appendix 1. Weyl’s theorem (Weyl 1939) 

Let D be a completely reducible representation of the group G in the vector space 
V = 0 v k  where v k  are irreducible subspaces. Then the commutant X of D, defined by 
[D,  XI = 0, forms the associative algebra spanned by the operators Xik which intertwine 

t If, for example, the matrices LJ( . ’P*)~ and& are simultaneously diagonalisable, then the unique-spin 
equations exist only for s = 0,  i, 1. If =tLk+/(.‘p’)k ( k  = 1,2)  are non-negative definite, then the unique-spin 
equations exist only for s = 0 ,  +, I ,  $ , 2 .  

- 
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the irreducible subspaces v k  and V, (and irreducible equivalent representations of G 
acting in v k  and VJ).  The operators Xfk are determined uniquely, and &XIk = 8,l& if 
i, j ,  1, k denote the equivalent representations, while X ,  = 0 otherwise. 

Note that Xkk are the projection operators. 

Appendix 2. Derivative of the formulae (28)-(29) and (30)-(31) 

For simplicity we restrict ourselves to the derivation of the simplified version (32)-(35) 
of equations (28)-(31), namely to the case L:!=O. The general formulae can be 
obtained quite analogously. 

(JF’)kMk(p),  where the 
M k  have the homogeneity degree with respect to p ,  equal to zero, then from equations 
(16)  and (26)  we obtain 

If we expand the operator M ( p )  in the form M ( p )  = 

Note that the homogeneity degree of the products M k L 1 / T  and MkLo is equal to zero, 
while for ( J F ) k  it is equal to k. On the other hand, the homogeneity degree of I - II is 
equal to zero. Therefore the above equation is equivalent to the system 

M , L ~ / J ~ =  0 ,  

M- L,/ J 2  + M ~ L ~  = I -- IT, 
M k L i / e + M k + i L o  = 0 for k s O  and - m  s k s - 2 ,  

M-,Lo = 0. 

Because of the invertibility of Lo we obtain 

M - ,  = M-,,+1= . . . = M-l= 0 ,  

( I - n ) ( L g 1 L J + l  = 0 ,  

M ( p )  = ( I - r I ) (  k=O i: ( -L&)k)Li l ,  

i.e. equations (32)  and (34)  hold. Applying the same considerations to D ( p ) ,  we obtain 
the equations (33) and (35).  
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I 
XCl,fl,[l,f]*, = AZ([iY,Y” + ( 4 / p 2 ) p , p ”  - (2/P2)PY(P,Y” - Y,P”)l 

f (1/J?)[(8/P2)PYP,P” - 2 Y P P ”  --P,Y” -iI?YY,Y ”I). 

), , :Cr,Y”+(2/P2)P,P”-( l /P2)PY(p,Yu-Y,P”)l  

The projector on the spin-: subspace is given by 
fJz ” = a  y - -  

while the base elements of Y “  (in this case the projectors on the representations 
Dio@Dot and Dfo@Dot)  are 

y”‘I.0, - 1 y“c1.f) = a ”-1 , -4Y ,YY,  I*. 4YLLY”. 

The base elements spanning the cominutant X, can be obtained from the base vectors of 
X; by the action of the projectors i(1 f y5) .  
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